Tree growth and survival are more sensitive to high rainfall than drought in a seasonal forest in Malaysia

Global change research has largely focused on the effects of drought on forest dynamics while the importance of excessive rainfall that can cause waterlogged soils has largely been assessed in riparian zones or seasonally flooded sites. However, increased rainfall may also cause decreased growth and survival of tree species in lowland aseasonal tropical forests due to increased risk from potentially more extensive and frequent waterlogged soils. We used a Bayesian modelling approach on a tree dynamics dataset from 2004 to 2017 to test the concomitant effects of rainfall excess and deficit and dry period length on tree growth and survival across a network of experimentally planted trees in a primary aseasonal forest in Malaysia.

Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia.

Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests’ gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE).

The power of citizen science to advance fungal conservation

Fungal conservation is gaining momentum globally, but many challenges remain. To advance further, more data are needed on fungal diversity across space and time. Fundamental information regarding population sizes, trends, and geographic ranges is also critical to accurately assess the extinction risk of individual species. However, obtaining these data is particularly difficult for fungi due to their immense diversity, complex and problematic taxonomy, and cryptic nature. This paper explores how citizen science (CS) projects can be leveraged to advance fungal conservation efforts.

Large invertebrate decomposers contribute to faster leaf litter decomposition in Fraxinus excelsior-dominated habitats: Implications of ash dieback

Leaf litter decomposition is a major component of nutrient cycling which depends on the quality and quantity of the leaf material. Ash trees (Fraxinus excelsior, decay time ∼ 0.4 years) are declining throughout Europe due to a fungal pathogen (Hymenoscyphus fraxineus), which is likely to alter biochemical cycling across the continent. The ecological impact of losing species with fast decomposing leaves is not well quantified. In this study we examine how decomposition of three leaf species with varying decomposition rates including ash, sycamore (Acer pseudoplatanus, decay time ∼ 1.4 years), and beech (Fagus sylvatica, decay time ∼ 6.8 years) differ in habitats with and without ash as the dominant overstorey species

Rewilding in the British policy landscape. A qualitative analysis of policy documents related to rewilding

UK parliamentary research recognises rewilding as an opportunity to fulfil national habitat restoration commitments. Nevertheless, there is a current lack of analysis concerning the policy landscape in Britain. To address this gap, we employ qualitative document analysis to assess how rewilding features in national policy documents in Britain.

How agroecology can help build dynamic cocoa agroforests in Ghana.

This article describes the transformative potential of agroecology as a beacon of hope for reestablishing balance in Ghana’s cocoa-forest mosaic landscapes. Agroecology — rooted in the principles of ecological harmony and sustainable agriculture — offers a way to revive and restore biodiversity, empower farmers and ensure a resilient and thriving future for cocoa farms.

More than 17,000 tree species are at risk from rapid global change.

Trees are pivotal to global biodiversity and nature’s contributions to people, yet accelerating global changes threaten global tree diversity, making accurate species extinction risk assessments necessary. To identify species that require expert-based re-evaluation, we assess exposure to change in six anthropogenic threats over the last two decades for 32,090 tree species. We estimated that over half (54.2%) of the assessed species have been exposed to increasing threats. Only 8.7% of these species are considered threatened by the IUCN Red List, whereas they include more than half of the Data Deficient species (57.8%). These findings suggest a substantial underestimation of threats and associated extinction risk for tree species in current assessments. We also map hotspots of tree species exposed to rapidly changing threats around the world. Our data-driven approach can strengthen the efforts going into expert-based IUCN Red List assessments by facilitating prioritization among species for re-evaluation, allowing for more efficient conservation efforts.

Contestations, counteractions and equitable conservation–a case study of Ghana’s Krokosua Hills Forest Reserve.

This paper delves into the intricate dynamics of forest conservation conflict in rural Ghana, where state-led conservation efforts through forest reserves have met fierce counteractions from local communities within and around the Krokosua Hills Forest Reserve. The study adopts a critical postcolonial institutional framework to examine the historical struggles that have shaped conservation policies in the country and subsequent contestations by forest-fringe communities (FFCs) seeking to use forest reserves for agricultural purposes. It dwells on archival materials, participant observation and interviews with farmers, local chiefs and forestry officials. The paper highlights the multifaceted strategies employed by these communities to assert their right to produce food within the forest reserve, leading to clashes with forestry authorities. By employing a critical postcolonial lens, the paper sheds light on the complex power relations and the historical legacies that underpin this conservation conflict, ultimately providing valuable insights for navigating sustainable and inclusive conservation approaches that respect the rights and local priorities of dispossessed, marginalised FFCs.

The Anthropocene condition: evolving through social–ecological transformations

Anthropogenic planetary disruptions, from climate change to biodiversity loss, are unprecedented challenges for human societies. Some societies, social groups, cultural practices, technologies and institutions are already disintegrating or disappearing as a result. However, this coupling of socially produced environmental challenges with disruptive social changes—the Anthropocene condition—is not new. From food-producing hunter–gatherers, to farmers, to urban industrial food systems, the current planetary entanglement has its roots in millennia of evolving and accumulating sociocultural capabilities for shaping the cultured environments that our societies have always lived in (sociocultural niche construction). When these transformative capabilities to shape environments are coupled with sociocultural adaptations enabling societies to more effectively shape and live in transformed environments, the social–ecological scales and intensities of these transformations can accelerate through a positive feedback loop of ‘runaway sociocultural niche construction’. Efforts to achieve a better future for both people and planet will depend on guiding this runaway evolutionary process towards better outcomes by redirecting Earth’s most disruptive force of nature: the power of human aspirations. To guide this unprecedented planetary force, cultural narratives that appeal to human aspirations for a better future will be more effective than narratives of environmental crisis and overstepping natural boundaries.

Young mixed planted forests store more carbon than monocultures—a meta-analysis

Although decades of research suggest that higher species richness improves ecosystem functioning and stability, planted forests are predominantly monocultures. To determine whether diversification of plantations would enhance aboveground carbon storage, we systematically reviewed over 11,360 publications, and acquired data from a global network of tree diversity experiments. We compiled a maximum dataset of 79 monoculture to mixed comparisons from 21 sites with all variables needed for a meta-analysis. We assessed aboveground carbon stocks in mixed-species planted forests vs. (a) the average of monocultures, (b) the best monoculture, and (c) commercial species monocultures, and examined potential mechanisms driving differences in carbon stocks between mixtures and monocultures. On average, we found that aboveground carbon stocks in mixed planted forests were 70% higher than the average monoculture, 77% higher than commercial monocultures, and 25% higher than the best performing monocultures, although the latter was not statistically significant. Overyielding was highest in four-species mixtures (richness range 2–6 species), but otherwise none of the potential mechanisms we examined (nitrogen-fixer present vs. absent; native vs. non-native/mixed origin; tree diversity experiment vs. forestry plantation) consistently explained variation in the diversity effects. Our results, predominantly from young stands, thus suggest that diversification could be a very promising solution for increasing the carbon sequestration of planted forests and represent a call to action for more data to increase confidence in these results and elucidate methods to overcome any operational challenges and costs associated with diversification.